Fault-tolerant quantum speedup from constant depth quantum circuits
نویسندگان
چکیده
منابع مشابه
Fault-tolerant quantum computation with constant overhead
What is the minimum number of extra qubits needed to perform a large fault-tolerant quantum circuit? Working in a common model of fault-tolerance, I show that in the asymptotic limit of large circuits, the ratio of physical qubits to logical qubits can be a constant. The construction makes use of quantum low-density parity check codes, and the asymptotic overhead of the protocol is equal to tha...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملBounds on the Power of Constant-Depth Quantum Circuits
We show that if a language is recognized within certain error bounds by constantdepth quantum circuits over a nite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC P; where EQNC is the constant-depth analogue of the class EQP. On the other hand, we adapt and extend ideas of DiVincenzo & Terhal [?] to show that, for any family F of quan...
متن کاملFault-Tolerant Quantum Computation with Constant Error Rate
Shor has showed how to perform fault tolerant quantum computation when the probability for an error in a qubit or a gate, η, decays with the size of the computation polylogarithmically, an assumption which is physically unreasonable. This paper improves this result and shows that quantum computation can be made robust against errors and inaccuracies, when the error rate, η, is smaller than a co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Research
سال: 2020
ISSN: 2643-1564
DOI: 10.1103/physrevresearch.2.033444